SSブログ

シュトルツ・チェザロの定理の超準解析による証明 [数学]

 久々に超準解析で証明問題をやってみました。
 お題として「シュトルツ・チェザロの定理」です。

【定理】実数列 $\{ a_n \}, \{ b_n \}$ について、$\{ b_n \}$ は狭義単調増加で非有界、かつ極限 \[ \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = c \] が存在すれば、 \[ \lim_{n \to \infty} \frac{a_n}{b_n} = c \] である。


 なんか見たことあるような雰囲気の定理ですが、これはあれです。「差分の比が収束すれば元の比も同じ値に収束する」という主張なので、差分を微分に変えたら有名なロピタルの定理になりますね。
 また、$b_n = n, a_0 = 0$ としたら、これも有名な「実数列が収束すればそのチェザロ平均も同じ値に収束する」という定理にもなります。

 では、証明していきましょう。以前の記事「チェザロ平均の収束の超準解析での証明例」のやり方に倣って進めます。

(証明)
 実数列 $\{ a_n \}, \{ b_n \}$ を、超自然数を番号とする超実数列に拡大しておく。
 任意の $m,n \in {}^*\mathbb{N}, m < n$ について、次が成り立つ。
\begin{eqnarray*}
a_n - a_m &=& \sum_{k=m}^{n-1}( a_{k+1} - a_k ) \\
&=& \sum_{k=m}^{n-1}( b_{k+1} - b_k ) \frac{ a_{k+1} - a_k }{ b_{k+1} - b_k }
\end{eqnarray*}
 この全体を $b_n$ で割って両辺から $c$ を引くと、次の変形ができる。
\begin{eqnarray*}
\frac{ a_n }{ b_n } - c &=& \frac{ a_m }{ b_n } + \frac{1}{ b_n } \sum_{k=m}^{n-1}( b_{k+1} - b_k ) \frac{ a_{k+1} - a_k }{ b_{k+1} - b_k } - c \\
&=& \frac{ a_m }{ b_n } + \frac{1}{ b_n } \sum_{k=m}^{n-1}( b_{k+1} - b_k )( \frac{ a_{k+1} - a_k }{ b_{k+1} - b_k } - c ) + \frac{1}{ b_n } \sum_{k=m}^{n-1}( b_{k+1} - b_k ) c - c \\
&=& \frac{ a_m }{ b_n } + \frac{1}{ b_n } \sum_{k=m}^{n-1}( b_{k+1} - b_k )( \frac{ a_{k+1} - a_k }{ b_{k+1} - b_k } - c ) + \frac{1}{ b_n }( b_n - b_m ) c - c \\
&=& \frac{ a_m - b_m c }{ b_n } + \frac{1}{ b_n } \sum_{k=m}^{n-1}( b_{k+1} - b_k )( \frac{ a_{k+1} - a_k }{ b_{k+1} - b_k } - c )
\end{eqnarray*}
 ここで、無限大超自然数 $n$ を任意にとる。$\displaystyle \lim_{n \to \infty} b_n = +\infty$ だから、この $n$ に対する $b_n$ は正の無限大超実数であり、従って $\sqrt{ b_n }$ も正の無限大超実数である。任意の自然数 $m$ に対して $a_m - b_m c$ は実数だから $\left| a_m - b_m c \right| < \sqrt{ b_n }$ であり、従って $m$ を十分小さな無限大超自然数にとると $\left| a_m - b_m c \right| < \sqrt{ b_n }$ とできる。この $m,n$ に対して、
\[ \mu = \max_{m \le k \le n-1} \left| \frac{ a_{k+1} - a_k }{ b_{k+1} - b_k } - c \right| \]
が存在し、
\[ \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = c \]
より $\mu \approx 0$(無限小超実数)である。これらと $\{ b_n \}$ が狭義単調増加であることより、
\begin{eqnarray*}
\left| \frac{ a_n }{ b_n } - c \right| &\le& \frac{ \left| a_m - b_m c \right| }{ b_n } + \frac{1}{ b_n } \sum_{k=m}^{n-1}( b_{k+1} - b_k ) \left| \frac{ a_{k+1} - a_k }{ b_{k+1} - b_k } - c \right| \\
&<& \frac{\sqrt{ b_n }}{ b_n } + \frac{1}{ b_n } \sum_{k=m}^{n-1}( b_{k+1} - b_k ) \mu \\
&=& \frac{1}{\sqrt{ b_n }} + \frac{1}{ b_n } ( b_n - b_m ) \mu \\
&<& \frac{1}{\sqrt{ b_n }} + \mu \\
&\approx& 0
\end{eqnarray*}
従って、任意の無限大超自然数 $n$ に対して $\displaystyle \frac{a_n}{b_n} \approx c$ が成り立つから、$\displaystyle \lim_{n \to \infty} \frac{a_n}{b_n} = c$ である。□

 どうでしょうか。普通の証明に比べて簡単になっているわけでもなさそうですが、やはり無限大や無限小を数として式変形して証明できるところは面白いかもしれません。

 念のため、上の証明中に使った超準解析の基本的な補題を証明しておきましょう。

【補題】実数列 $\{ a_n \}$ と正の超実数 $M$ について、任意の自然数 $k$ に対して $\left| a_k \right| < M$ ならば、ある無限大超自然数 $n$ が存在して、$\{ a_n \}$ を拡大した超実数列において、 \[ \forall k \in {}^*\mathbb{N} \, ( k \le n \to \left| a_k \right| < M ) \tag{1} \] とすることができる。

(証明)
 $\{ a_n \}$ を超自然数を番号とする超実数列に拡大しておく。$K$ を任意の正の実数とし、$A_K = \{ \, k \in \mathbb{N} \, \mid \, \left| a_k \right| \ge K \, \}$ とおくと、自然数の性質より $A_K$ は空でなければ最小元をもつ。すなわち、
\[ \forall K \in \mathbb{R} \, ( K > 0 \land A_K \neq \emptyset \to \exists m \in \mathbb{N} \, ( m = \min A_K ) ) \]
移行原理より、
\[ \forall K \in {}^*\mathbb{R} \, ( K > 0 \land {}^*A_K \neq \emptyset \to \exists m \in {}^*\mathbb{N} \, ( m = \min {}^*A_K ) ) \]
ここで ${}^*A_K = \{ \, k \in {}^*\mathbb{N} \, \mid \, \left| a_k \right| \ge K \, \}$ であるから、これを $B_K$ とおく。
 そこで、正の超実数 $M$ が任意の自然数 $k$ に対して $\left| a_k \right| < M$ であるとする。$B_M = \emptyset$ ならば、任意の無限大超自然数 $n$ に対して明らかに$(1)$は成立する。$B_M \neq \emptyset$ ならば、$m = \min B_M$ となる超自然数 $m$ が存在し、任意の自然数 $k$ に対して $k \notin B_M$ だから $m$ は無限大超自然数である。$n = m - 1$ とすると $n$ も無限大超自然数で、この $n$ に対し$(1)$が成立する。□

nice!(0)  コメント(0) 
共通テーマ:学問

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

※ブログオーナーが承認したコメントのみ表示されます。